
Including the Effect of a Future Test and Redesign
in Reliability Calculations

Diane Villanueva,∗ Raphael T. Haftka,† and Bhavani V. Sankar‡

University of Florida, Gainesville, Florida 32611

DOI: 10.2514/1.J051150

It is common to test components after they are designed and redesign if necessary. The reduction of the uncertainty

in the probability of failure that can occur after a test is usually not incorporated in reliability calculations at the

design stage. This reduction in uncertainty is accomplished by additional knowledge provided by the test and by

redesign when the test reveals that the component is unsafe or overly conservative. In this paper, a methodology is

developed to estimate the effect of a single future thermal test followed by redesign and to model the effect of the

resulting reduction of the uncertainty in the probability of failure. Using assumed distributions of computation and

experimental errors and given redesign rules, possible outcomes of the future test and redesign throughMonte Carlo

sampling are obtained to determinewhat changes in probability of failure, design, andweight will occur. In addition,

Bayesian updating is used to gain accurate estimates of the probability of failure after a test. These methods are

demonstrated through a future thermal test on an integrated thermal protection system. Performing redesign

following a single future test can reduce the probability of failure by orders of magnitude, on average, when the

objective of the redesign is to restore original safety margins. Redesign for a given reduced probability of failure

allows additional weight reduction.

Nomenclature

C = capacity
DL = lower bound for deterministic redesign criterion
DU = upper bound for deterministic redesign criterion
d = design variable
ds = foam thickness, m
ec = computational error
eextrap = extrapolation error
ex = experimental error
f�T� = probability distribution of the temperature
g = limit state function
I = indicator function
ltest�T� = likelihood function of obtaining the test-article

temperature
M = number of samples of the capacity
m = mass per unit area, kg=m2

N = number of samples of the response
PL = lower bound for probabilistic redesign criterion
PU = upper bound for probabilistic redesign criterion
pf;analyst = analyst-estimated probability of failure, %
pf;target = probabilistic redesign probability of failure target, %
pf;true = true probability of failure, %
R = response
r = random variable
T = temperature, K
�dlim = limit of distance between test design and other

design

Subscripts

allow = allowable
Bayes = value obtained from Bayesian updating
calc = calculated
corr = corrected
ini = initial
inp = input
meas = measured
test = test article
true = true
Ptrue = possible true

Superscript

upd = updated

I. Introduction

I N RELIABILITY-BASED design optimization, uncertainties are
considered when calculating the reliability of the structure. In the

design process, uncertainty is often compensated for with safety
factors and knockdown factors. However, after design, it is cus-
tomary for the component to undergo various uncertainty-reduction
measures (URMs). Examples of URMs in the aerospacefield include
thermal and structural testing, inspection, health monitoring,
maintenance, and improved analysis and failure modeling. Since
most components undergo these URMs, it would be beneficial to
include their effects in the design process.

In recent years, there has been amovement to quantify the effect of
URMs on the safety of the product over its life cycle. Much work has
been completed in the areas of inspection and maintenance for
structures under fatigue loading. Fujimoto et al. [1], Toyoda-Makino
[2], and Garbatov and Soares [3] developed methods to optimize
inspection schedules for a given structural design to maintain a
specific level of reliability. Even further, Kale et al. [4,5] explored
how simultaneous design of the structure and inspection schedule
allows the trading of cost of additional structural weight against
inspection cost of stiffened panels affected by fatigue crack growth.

However, there are few studies that have incorporated the effects of
future tests followed by possible redesign on the design of a structure.
Studies by Acar et al. [6,7] investigated the effects of future tests and
redesign on the final distribution of failure stress and structural
design with varying numbers of tests at the coupon, element, and
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certification levels. Such studies showed that these tests with possible
redesign can greatly reduce the probability of failure, and they
estimated the required structural weight to achieve the same
reduction without tests.

In this study, we examine the effect of a single future thermal test
followed by possible redesign on the reliability and weight of an
integrated thermal protection system (ITPS). An integrated thermal
protection system protects space vehicles from the severe aero-
dynamic heating experienced upon atmospheric reentry while also
providing some structural load bearing benefit. The thermal test
considered in this study measures the maximum temperature of the
bottom face sheet, which is critical due to its proximity to the
underlying vehicle structure. A design is considered to have failed
thermally if it exceeds the maximum allowable temperature.

In previous work on the optimization of the ITPS, Villanueva et al.
[8] used probability of failure calculations that considered only the
variability in geometric and material parameters and error due to
shortcomings in the analytical model. Expanding on those studies,
we include the information gained from a test in a temperature
estimate, the reduction in uncertainty resulting from the test, and the
ability of the test to guide redesign for dangerous or overly
conservative designs. Thereby, the objectives of this paper are as
follows:

1) Present amethodology to both predict and include the effect of a
future redesign following a test during the design stage.

2) Illustrate the ability of a test in combination with redesign to
reduce the probability of failure even when a test shows that the
design is computationally unconservative.

3) Examine the overall changes in mass resulting from redesign
based on the future test.

A description of the ITPS is presented in Sec. II. Next, the
uncertainty model and probability of failure calculations are
described in Sec. III. Section IV continues with the methodology to
calibrate the computational model based on a test and includes
redesign based on the test. The method to simulate future tests is
summarized in Sec. V. Section VI presents an illustrative example
that details the effect of including the test and redesign in probability
of failure calculations. The paper then concludeswith a summary and
ideas for future work in Sec. VII.

II. ITPS Description

Figure 1 shows the ITPS panel being studied, which is a
corrugated-core sandwich-panel concept. The design consists of a
top face sheet and webs made of titanium alloy (Ti-6Al-4V) and a
bottom face sheet made of beryllium. Saffil® foam is used as
insulation between thewebs. The relevant geometric variables of the
ITPS design are also shown on the unit cell in Fig. 1. These variables
are the top face thickness tT , bottom face thickness tB, thickness of
the foam dS, web thickness tw, corrugation angle �, and length of unit
cell 2p.

Thermal analysis of the ITPS is done using 1-D heat transfer
equations on amodel of the unit cell. The heat flux incident on the top
face sheet of the panel is highly dependent on the vehicle shape as
well as the vehicle’s trajectory. As in previous studies by Bapanapalli
[9], incident heat flux on a Space Shuttle-like vehicle was used. A

large portion of the heat is radiated out to the ambient by the top face
sheet, and the remaining portion is conducted into the ITPS. We
consider theworst-case scenario, where the bottom face sheet cannot
dissipate heat, by assuming that the bottom face sheet is perfectly
insulated. Also, there is no lateral heat flow out of the unit cell, so that
heat flux on the unit cell is absorbed by that unit cell only. For a more
in-depth description of the model and boundary conditions, the
reader is referred to the Bapanapalli reference.

The maximum temperature of the bottom face sheet of the ITPS
panel is calculated using the quadratic response surface developed by
Villanueva et al. [8] by a process similar to that of Gogu et al. [10],
using the MATLAB toolbox developed by Viana.§ It is a function of
the previously described geometric variables and the density, thermal
conductivity, and specific heat of titanium alloy, beryllium, and
Saffil® foam. The mass per unit area m of the ITPS is calculated
using Eq. (1), where �T , �B, and �w are the densities of the materials
that make up the top face sheet, bottom face sheet, and web,
respectively:

m� �TtT � �BtB �
�wtwdS
p sin �

(1)

An experiment that finds the bottom face sheet temperature of a
small ITPS panel is usually conducted in a vacuum chamber with
heat applied to the top face sheet by heat lamps. The sides of the panel
are typically surrounded by some kind of insulation to prevent lateral
heat loss. The temperature of the bottom face sheet is found with
thermocouples embedded into or in contact with the lower surface of
the bottom face sheet.

III. Uncertainty Modeling

A. Classification of Uncertainties

Oberkampf et al. [11] provided an analysis of different sources of
uncertainty in engineering modeling and simulation, which was
simplified by Acar et al. [6]. We use a similar classification to
categorize types of uncertainty as errors (uncertainties that apply
equally to every ITPS) or variability (uncertainties that vary in each
individual ITPS). We further describe errors as mostly epistemic and
variability as aleatory. It is important to distinguish between types of
uncertainty because a specific uncertainty-reduction measure may
target either error or variability. Tests reduce errors by allowing us to
calibrate analytical models. For example, testing can be done to
reduce the uncertainty in failure predictions due to high stresses.
Variability can be reduced by lowering tolerances in manufacturing.
Variability is modeled as random uncertainties that can be modeled
probabilistically. In contrast, errors are fixed for a given ITPS and are
largely unknown, but here they aremodeled probabilistically as well.

Variability in material properties and construction of the ITPS
leads to variability in the ITPS thermal response. More specifically,
wewill have variability in the calculated temperature, due to the input
variabilities.We simulate this process with aMonte Carlo simulation
that generates values of the random variables r based on an estimated
distribution and calculates the bottom face sheet temperatureTcalc for

Fig. 1 Corrugated-core sandwich-panel ITPS concept.

§Data available online at http://sites.google.com/site/felipeacviana/.

VILLANUEVA, HAFTKA, AND SANKAR 2761

http://sites.google.com/site/felipeacviana/


each, generating the probability distribution function. The calculated
temperature distribution that reflects the random variability is
denoted fcalc�T�. In estimating the probability of failure, we also
need to account for the modeling or computational error. We denote
this computational error by ec, where ec is modeled as a uniformly
distributed random variable within confidence limits the in the
computationalmodel as defined by the analyst. Unlike thevariability,
the error has a single value, and the uncertainty is due to our lack of
knowledge.

For a given design given by d and r, the possible true temperature
TPtrue can be found by Eq. (2) in terms of possible computational
errors ec. The sign in front of ec is negative, so a positive error implies
a conservative calculation, meaning that it overestimates the
temperature:

TPtrue�d; r; ec� � Tcalc�d; r��1 � ec� (2)

Since the analyst does not know ec and it is modeled as a random
variable, we can form a distribution of the possible true temperature,
denoted as fPtrue�T�. To illustrate the difference between the true
distribution of the temperature ftrue�T� and possible true distribution
fPtrue�T�, let us consider a simple example where the calculated
temperature of the nominal design is 1, the true temperature is 1.05,
and the computational error is uniformly distributed in the range
[�0:1, 0.1]. The possible true temperature without variability are
uniformly distributed in the range [0.9, 1.1] by Eq. (2). Now, let us
consider an additional variability in the temperature due to
manufacturing tolerances in the range [�0:02, 0.01], such that
Tcalc�d; r� is uniformly distributed in the range [0.98, 1.01]. Finally,
the true temperature will vary from [1.03, 1.06] as ftrue�T�, and the
possible true temperature will vary from [0.882, 1.111] as fPtrue�T�.

Figure 2 illustrates howwe arrive at the distribution fPtrue�T�. The
input random variables have initial distributions, denoted as finp�r�,
and these random variables, in combination with the design
variables, lead to the distribution of the calculated temperature
fcalc�T�. The random computational error is applied, leading to the
distribution of the possible true temperature fPtrue�T�, which has a
wider distribution than fcalc�T�.

As previously noted, ec is modeled as a random variable not
because it is random, but because its value is unknown to the analyst.
To emphasize this point, the actual true temperature is known only
when we know the actual value of ec as ec;true as illustrated in Eq. (3)
below:

Ttrue�d; r� � Tcalc�d; r��1 � ec;true� (3)

Again, these true values are unknown to the analyst. This
distinction between true values and analyst-estimated, possible true
values is important and will be a point of comparison throughout this
paper.

Figure 3 shows an example of the probability distribution of the
true temperature ftrue�T�, as well as the probability density functions
(PDFs) of fcalc�T� and fPtrue�T�. For this example, we modeled the
variability in the material properties and variability in geometry with
normal distributions, and we modeled the computational error with a
uniform distribution. The plots of each PDF show the probability of
exceeding the allowable temperature Tallow, represented by the area
where the temperature exceeds the allowable.

We chose an illustration where the computational error is
unconservative so the fcalc�T� provides an underestimate of the

probability of failure given by ftrue�T�. This computational error
between the mean of fcalc�T� and the mean of ftrue�T� is ec;true.
However, since we include ec as a random variable, we widened the
distribution fcalc�T�, resulting in fPtrue�T�. This provides a more
conservative estimate of the probability that can compensate for the
unconservative calculation. Of course, when the error in the
calculation is conservative, this wide distribution will grossly
overestimate the probability of failure.

B. True Probability of Failure Calculation

The true probability of failure of a design dwith random variables
r can be found when the true computational error is known. This is
clearly a hypothetical situation because in reality the true compu-
tational error is not known by the analyst. Here, Monte Carlo
simulation is used to calculate the true probability of failure. The
limit state equation g is formulated as the difference between a
capacity C and response R as shown in Eq. (4):

g� Tallow � Ttrue�d; r� � C � R (4)

Sincewe consider failure to occurwhen themaximumbottom face
sheet temperature exceeds the allowable temperature Tallow, the
response is Ttrue and the capacity is the allowable temperature. The
true probability of failure pf;true is estimated with Eq. (5):

pf;true �
1

N

XN
i�1

I�g�Ci; Ri� � 0	 (5)

The indicator function I equals 1 if the response exceeds the capacity,
and it equals 0 for the opposite case. The number of samples is N.

C. Analyst-Estimated Probability of Failure Calculation

Since the true computational error is unknown, the true probability
of failure is unknown as well. Because of this, the best estimate the
analyst can obtain uses the calculated temperature Tcalc and the
computational error through the possible true temperature of Eq. (2)
to determine the estimated probability of failure with the limit state
equation formulated as in Eq. (6):

g� Tallow � TPtrue�d; r; ec� � C � R (6)

Since the two types of uncertainty (computational errors and
variability in material properties and geometry) in the response are
independent, separableMonte Carlo sampling [12] can be usedwhen
evaluating the probability of failure. The limit state equation can be
reformulated so that the computational error is on the capacity side,
and all random variables associated with material properties and
geometry lie on the response side:

Fig. 2 Illustration of the variability of the input random variables,

calculated value, computational error, and resulting distribution of

possible true temperature.

Fig. 3 Illustration with unconservative calculation of temperature

when including the error in the estimate improves the estimate of the

probability of failure.
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g� Tallow
1 � ec

� Tcalc�d; r� � C � R (7)

This analyst-estimated probability of failure pf;analyst can then be
calculated with Eq. (8), whereM and N are the number of capacity
and response samples, respectively:

pf;analyst �
1

MN

XN
i�1

XM
j�1

I�g�Cj; Ri� � 0	 (8)

IV. Including the Effect of a Calibration
Test and Redesign

We consider a test, performed for the purpose of validating and
calibrating a model, for a selected design dtest to determine the
temperature of the test article Ttest. We further assume that the test
article is carefully measured for both dtest and rtest so that both are
accurately known and that the errors in the computed temperatures
due to uncertainty in the values of dtest and rtest are small compared
with the measurement errors and can be neglected. If no errors are
made in the measurements of dtest, rtest, and Ttest, then the
experimental result is actually the true temperature of the test article.
We denote this error-free test temperature Ttest;true:

Ttest;true � Ttrue�dtest; rtest� (9)

However, there is unknown measurement error ex, which we model
as a randomvariable based on our estimate of the accuracy of the test.
Themeasured temperatureTmeas then includes the experimental error
ex;true. The experimental error could also include a component due to
the fact that rtest is not perfectly known:

Tmeas �
Ttest;true
1 � ex;true

(10)

Using the computational and experimental results, along with the
corresponding error estimates for the test article, we are able to refine
the calculated value and its error for any design described by the
design variables d and random variables r. In this way, the result of
the single test can be used to calibrate calculations for other designs.
We examine two methods, which take different approaches in using
the test as calibration. The first approach introduces a simple
correction factor based on the test result. The second uses the
Bayesianmethod to update the uncertainty of the calculated value for
dtest based on the test result and then transfers this updated
uncertainty to other calculations as the means of calibration.

A. Correction-Factor Approach

The correction factor approach is a fairly straightforward method
of calibration. Assuming that the test result is more accurate than the
calculated result for the test article, we scale Tcalc for any value of d
and r by the ratio of the test result to the calculated result to obtain the
corrected calculation Tcalc;corr:

Tcalc;corr � Tcalc�d; r�
�

Tmeas

Tcalc�dtest; rtest�

�
(11)

B. Bayesian-Updating Approach

Before the test, we have an expectation of the test results based on
the computational result of dtest and rtest. We denote this distribution
byfinitest;Ptrue, which can beviewed as the distribution offPtrue�T� of the
test article with fixed random variables rtest. Furthermore, it may be
viewed as the possible true temperature distribution of the test article
just before the test.

In the test, we measure a temperature Tmeas. Because of
experimental error ex, the true test result Ttest;true is not equal to Tmeas

(as seen in Eq. (10)). The possible true value of the test result is
instead given as

Tmeas
test;Ptrue � Tmeas�1 � ex� (12)

where Tmeas
test;Ptrue forms the distribution of possible true test results

available from the measurements only. We thus have two distrib-
utions of possible true test results. One is based on the calculated
value and the distribution of the calculation error, and the other is
based on the measurement and the distribution of the measurement
error.

TheBayesian approach combines these two distributions to obtain
a narrower andmore informative distribution. In this formulation, the
probability distribution of the possible true temperature of the test
article ftest;Ptrue�T� is updated as

fupdtest;Ptrue�T� �
ltest�T�finitest;Ptrue�T�R�1

�1 ltest�T�finitest;Ptrue�T� dT
(13)

where the likelihood function ltest�T� is the conditional probability
density of obtaining the test result Tmeas when the true temperature of
the test article is T. That is, ltest is the probability density of T=�1 �
ex� evaluated at T � Tmeas.

The updated estimate fupdtest;Ptrue�T� is the distribution of the updated
true possible test result Tupd

test;Ptrue. This is used to find the distribution
of the Bayesian estimate of the computational error eBayes with
Eq. (14):

eBayes � 1 �
Tupd
test;Ptrue

Tcalc�dtest; rtest�
(14)

We can then replace the possible true temperature given by Eq. (2)
with a true temperature that uses the Bayesian estimate of the error:

TPtrue�d; r; eBayes� � Tcalc�d; r��1 � eBayes��1 � eextrap� (15)

The additional error eextrap is included to account for the error that
occurs when applying this Bayesian estimate of the error to some
design other than the test design. This extrapolation error is further
described in Sec. IV.B.2.

Note that it is also possible to perform the Bayesian updating by
reversing the roles of the two possible true test temperatures. That is,
we could take the distribution based on the measurement error as the
initial distribution and take the computed result as the additional
information. However, in this case the likelihood function would
require repeated simulations for different possible true temperatures,
greatly increasing the computational cost.

1. Illustrative Example of Calibration by the Bayesian Approach

To illustrate how Bayesian updating is used to calibrate
calculations based on a single future test, we consider a simple case
where both the computational and experimental errors are uniformly
distributed. To simplify the problem, we normalize all temperatures
by the calculated temperature so that Tcalc�dtest; rtest� � 1. The error
bound of the calculation is 
10% and the error bound of the test is

7%. The normalized test result is Tmeas � 1:05.

In this paper, we make the simplifying assumption that the
likelihood function is about Tmeas rather than T. That is, we use
conditional probability of obtaining the temperature T given the
measured temperature. This allows for a uniform value of the
likelihood function where it is nonzero, which thereby results in a
uniform distribution of the updated Bayesian estimate of the

computational error since the distribution of fupdtest;Ptrue will also be
uniform. The effect of this approximation of the likelihood function
is examined in Appendix A. The initial probability distribution
finitest;Ptrue�T� and the likelihood function ltest are described by
Eqs. (16) and (17), respectively:

finitest;Ptrue�T� �
(

1
0:2Tcalc�dtest;rtest� if

���� T
Tcalc�dtest ;rtest� � 1

����� 0:1;

0 otherwise

(16)
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ltest�T� �
(

1
0:14Tmeas

if

����T�Tmeas

Tmeas

����� 0:07;

0 otherwise

(17)

Since Tcalc�dtest� � 1 and the computation error bounds are

10%, the initial distribution of the true temperature is
finitest;Ptrue�T� � 5 on the interval (0.9, 1.1) and zero elsewhere. This
is shown in Fig. 4. The test result of Tmeas � 1:05 results in a
likelihood of ltest � 6:803 on the interval (0.9765, 1.1235) and zero
elsewhere. Equation (13) is used to find the updated Ttrue distribution

so that fupdtest;Ptrue�T� � 8:1 on the interval (0.9765, 1.1) and zero
elsewhere.

The updated distribution shows that the true temperature is
somewhere on the interval (0.9765, 1.1). Using this temperature
distribution along with the calculated value Tcalc�dtest�, the updated
error distribution eBayes can be found. Through Eq. (14), we
determine that eBayes is uniformly distributed from �10 to 2.35%.

2. Extrapolation Error in Calibration

Figure 5 illustrates how the Bayesian approach is used to calibrate
the calculations for other designs described by d. Here, we consider
the case when the calculated temperature is linear in the design
variable d, and there is no variability (random variables fixed at
nominal values).

At design dtest, we have the same error scenario similar to that
illustrated in Fig. 4. That is, we represent the calculated temperature
at dtest as a point on the black solid line, and the error bounds about
this calculation by are represented by the black dotted lines. The star
represents the experimentally measured temperature, and the error
bars show the uncertainty in this temperature. By the Bayesian
approach, we obtain a corrected test temperature as represented by

the point on the gray line, aswell as updated error bounds represented
by the gray dash-dotted line.

However, this correction and updated error is most accurate at the
test design. Therefore, we apply an additional error, the extrapolation
error eextrap, when calibrating designs other thandtest. Note that atdtest
the updated error bounds in Fig. 5 coincide with the error bounds of
the test. As the design becomes increasingly different from dtest, the
updated error bounds become wider.

Themagnitude of eextrap is assumed to be proportional the distance
between d and dtest, such that

eextrap � �eextrap�max

kd � dtestk
�dlim

(18)

This defines the extrapolation error so that it ismaximumwhen the
distance between d and dtest is at limit of this distance�dlim and zero
at the test design. The extrapolation error is ameasure of the variation
of the errors in the model away from the test design. In this paper we
assume that the magnitude of eextrap is linear with the distance
between d and dtest, which would be reasonable for small changes in
the design. However, we examine the effect of this assumption in
Appendix B, where we use a quadratic variation.

C. Test-Corrected Probability of Failure Estimate

The corrected probability of failurepf;analyst-corr after the test can be
estimated by the analyst using the updated error obtained from the
Bayesian approach. Separable Monte Carlo is used to calculate
pf;analyst-corr.

g� Tallow
1 � eBayes

� Tcalc�d; r��1 � eextrap� � C � R (19)

pf;analyst-corr �
1

MN

XN
i�1

XM
j�1

I�g�Cj; Ri� � 0	 (20)

D. Redesign Based on the Test

Two criteria for redesign are considered, each with different
perspectives on the purpose of the redesign. The first criterion is
based on the agreement between the measured and calculated values
for the test article. The second criterion considers the probability of
failure estimated by the analyst.

1. Deterministic Redesign

In deterministic redesign, redesign occurs when there is a signi-
ficant difference between the experimentally measured temperature

Fig. 4 Illustrative example of Bayesian updating showing the initial distribution (top), initial distribution and test (middle), and updated distribution

(bottom).

Fig. 5 Illustration of the calibration using Bayesian updating.

2764 VILLANUEVA, HAFTKA, AND SANKAR



Tmeas and the expected temperature given by the computational
model. It is assumed that the temperature given by the computational
model (Tcalc) is the desired value. Therefore, the component is
redesigned to restore this original temperature.

The deterministic redesign criterion is implemented by imposing
limits on the acceptable ratio of the measured temperature to the
calculated temperature. Redesign occurs when Tmeas=Tcalc�dtest; rtest�
is less than the lower limitDL (conservative computational model) or
exceeds the upper limit DU (unconservative computational model).

2. Probabilistic Redesign

In probabilistic redesign, the original structure is designed for a
specified probability of failure, and redesign is also done to achieve a
specified probability of failure. It is reasonable to select the target
redesign probability pf;target to be the same as that obtained with
probabilistic design. The target redesign probability of failure can
also be set to make the design safer after the test. Therefore, redesign
occurs when the test-corrected probability of failure estimate, given
by Eq. (20) is outside the limits of the acceptable range. The lower
limit of this range is denoted as PL, and the upper limit is denoted
as PU.

V. Monte Carlo Simulations of a Future
Test and Redesign

Monte Carlo simulations are used to simulate the effect of a future
test for a design described bydesignvariablesd and randomvariables
r with the goal of simulating multiple possible outcomes of this test.
To simulate a single outcome of the future test, wefirst obtain a single
sample of the true computational and experimental errors.

Using the calculated value for the test design and the true
computational error, we can obtain the true temperature by Eq. (3).
Next, the experimentally measured temperature is found using
Eq. (10). The choice can bemade to calibrate by the correction factor
approach or the Bayesian-updating approach, and, further, the choice
of deterministic or probabilistic redesign can be made.

The true and corrected analyst-estimated probabilities of failure
after the test can then be determined. At this point, the effect of only
one possible outcome of the test has been examined. Themajor steps
and equations involved in the simulation of a single outcome of the
test are summarized in the pseudocode given in Fig. 6.¶

To determine another possible outcome, the true computational
and experimental errors are resampled and the process is repeated.
Therefore, for n possible outcomes of a future test, we sample n pairs
of the errors and true probabilities of failure, n analyst-estimated
probabilities of failure after the test, and up to n updated designs.
Note that there is a single initial design, but if k of the n cases are
redesigned, we will end up with up to k� 1 different designs.

VI. Illustrative Example

In this example, we compare the probabilities of failure of an ITPS
with the dimensions andmaterial properties of probabilistic optimum
found in [8]. In that study, the optimumwas foundwith constraints on
the maximum bottom face sheet temperature, buckling of the web,
and maximum von Mises stress in the webs with the bottom face

Fig. 6 Procedure to simulate n possible outcomes of a future test with redesign for a design described by d and r.

¶In the implementation of this algorithm, it is assumed that all analysts
performing the test have the same value of rtest. Since each analyst accurately
measured rtest, the effect of this assumption is likely to be negligible.
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sheet, web thickness, and foam thickness as the designvariables. The
failure considered here is exceeding the allowable bottom face sheet
temperature Tallow. All random variables are normally distributed
with the mean and coefficient of variation (CV) shown in Table 1.

In this example, we consider uniform distributions of the errors,
with the experimental error significantly smaller at 
3% than the
computational error at 
10%, as shown in Table 2. The original
estimated probability of failure is 0.121% and the nominal mass per
unit area is 35:1 kg=m2. Since the distributions of the errors are
bounded, we remove the possibility of extreme differences between
the calculated and experimentally measured values in the simulated
future test. With these values of the errors, in the most extreme case,
the temperatures differ by approximately 13%, which occurs when
the errors are sampled at opposing bounds of the distribution (e.g.,
ec;true � 0:1 and ex;true ��0:03). If normal distributions of the errors
were used, this difference can become infinite.

The extrapolation error eextrap is estimated to be 2% when d is
changed by
10% from dtest and varies linearly with change in d:

eextrap � 0:02
kd � dtestk
0:1kdtestk

(21)

It is possible to assume other relationships between of the
extrapolation error and the distance of d from dtest. In Appendix B,
we examine the effect of assuming that the magnitude of eextrap is
quadratic with the change in d.

In this example, we examine the benefits of including a future test
by examining several cases that include future tests, one without
redesign and onewith redesign based on the future test by the process
described in Sec. V. We will examine 10,000 possible future test
outcomes (10,000 samples of the errors) and use 10,000 samples of
the random variables. Therefore, the true probability of failure is
calculated with 10,000 samples each of the response and capacity,
whereas the analyst-estimated probability of failure is calculated
with 10,000 samples of the capacity and 10,000 of the response by
separable Monte Carlo.

A. Future Test Without Redesign

Using the 10,000 possible outcomes of the single future test, we
can estimate the effectiveness of the Bayesian approach by
comparing three cases. In thefirst case, the analyst acceptsTcalc as the
best estimate of the test-article temperature. In the second case, the
analyst accepts Tmeas. In the third, the analyst accepts TBayes, where

TBayes is the temperaturewith themaximum likelihood in the updated
distribution. Since this example simplifies the likelihood function
(see Sec. IV.B.1) so that the updated distribution is uniform, we take
the mean the distribution as TBayes. We compare the absolute error of
each from the true temperature in Table 3.

These results show that the Bayesian approach provides the
analyst with the most accurate estimate of Ttrue for the test article.
Accepting Tmeas results in a slightly increased error and accepting
only the original Tcalc has theworst error with a mean value of 5%. In
9002 of the 10,000 cases, the Bayesian approach performed as well
as, or better than, just accepting the experimentally measured result;
it was also better than or equal to accepting the calculated value in
8493 cases. Accepting the experimentally measured results was
better than or equal to accepting the calculated value in 8493 cases as
well.

In addition, we can compare the analyst-estimate probability of
failure to the true probability of failure. These results are given in
Table 4. We observe that the mean true probability of failure is equal
to that of the original estimated probability of failure before the test.
This result is not unexpected as we did not allow redesign, thus
preventing any changes in design and thus the probability of failure.

It is important to note that 8884 out of the 10,000 possible
outcomes show that the true probability of failure is less than the
original estimate of the probability of failure. In fact, the median true
probability of failure is zero and is zero up to the 85th percentile. A
summary of the percentiles is shown in Table 5.

Based on the large number of true probability of failures that are
zero, it would be expected that if redesign were implemented to
restore the original estimated probability of failure, most redesigns
would increase the probability of failure.

B. Redesign Based on Test

In this section, we examine the effect of deterministic and
probabilistic redesign for the example. These two redesign
methodologies are described in Sec. IV.D.

1. Deterministic Redesign

We chose deterministic redesign to occur when the ratio Tmeas=
Tcalc�dtest; rtest� is greater than 1.05 (unconservative computational

Table 1 ITPS variables

Variable Symbol Nominal CV, %

Web thickness tw 1.77 mm 2.89
Bottom face sheet tB 7.06 mm 2.89
Foam thickness ds 71.3 mm 2.89
Top face sheet thickness tT 1.2 mm 2.89
Half unit cell length p 34.1 mm 2.89
Angle of corrugation � 80� 2.89
Density of titaniuma �Ti 4429 kg=m3 2.89
Density of berylliumb �Be 1850 kg=m3 2.89
Density of foam �S 24 kg=m3 0
Thermal conductivity of titanium kTi 7:6 W=�m=K� 2.89
Thermal conductivity of beryllium kBe 203 W=�m=K� 3.66
Thermal conductivity of foam kS 0:105 W=�m=K� 2.89
Specific heat of titanium cTi 564 J=�kg=K� 2.89
Specific heat of beryllium cBe 1875 J=�kg=K� 2.89
Specific heat of foam cS 1120 J=�kg=K� 2.89

aTop face and web material.
bBottom face material.

Table 2 Distribution of errors

Error Distribution Bounds

ec Uniform 
10%
ex Uniform 
3%

Table 3 Comparing absolute true error when using Tcalc,

Tmeas and TBayes as the test-article temperature

T compared Mean error, % Standard deviation of error, %

Tcalc 5.0 2.9
Tmeas 1.5 0.8
TBayes 1.3 0.8

Table 4 Probabilities of Failure without Redesign

(using Bayesian Correction)

Parameter Mean Standard deviation Minimum Maximum

pf;true, % 0.121 0.390 0 2.00
pf;analyst-corr, % 0.121 0.274 0 1.93

Table 5 Summary of the percentiles
of the true probability of failure

without redesign

Percentiles, % pf;true, %

25 0
50 0
75 0
88.8 0.15
90 0.20
95 1.10
97.5 1.80
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model) or less than 0.95 (conservative computational model). We
consider one design variable, the foam thickness ds. This variable
was chosen because it has a large impact on the bottom face sheet
temperature. The results including deterministic redesign are given in
Table 6.

These results show that the true probability of failure is greatly
reducedwhen redesign is allowed. In addition, the standard deviation
is also reduced. Since the redesign is symmetric, it does not cause
much change in the average mass. The reason for this drastic
reduction in probability of failure is the substantial reduction in error
that allowed us to redesign all the designs that had a probability of
failure above 0.121%. So while the system was designed for a
probability of failure of 0.121%, it ended up with a mean probability
of failure of 0.0007%.

However, we note a large standard deviation in ds, with the
minimum andmaximum values quite different from the design value
of 71.3 mm. In practice, the redesign may not be allowed to be this
drastic. Therefore, we also examine the case where the bounds of the
redesigned ds are restricted to 
10% of the original nominal dS.
These results are given in Table 7.

We observe that restricting the bounds of dS does not change the
true probability of failure and does not cause a significant change in
the average mass.

2. Probabilistic Redesign

The initial design does not necessarily meet the reliability
requirements of the designer. It can be, for example, a candidate
design in a process of design optimization. When it comes to proba-
bilistic redesign, one may examine redesign to the mean probability
without redesign or to a target probability. Here we assume the latter,
and we examine cases where the target redesign probability is
pf;target � 0:01% with and without bounds on ds. Here, we require
redesign to occur when the estimated probability of failure is not

within 
50% of the target. We require that all unconservative
(dangerous) designs above the 50% threshold be redesign, but reject
the redesign of overly conservative cases if itsmass does not decrease
by at least 4.5%. Since only one design variable, the foam thickness,
is considered, a decrease in mass can only result from a decrease in
foam thickness, which causes an increase in temperature. The results
are shown in Table 8.

Without bounds on the redesigned ds, we observe that the analyst-
estimated target probability of failure is close to the target of 0.01%. It
is also observed that there is a significant reduction in mass (4%
reduction) and a reduction in the original mean true probability of
failure from 0.121 to 0.003%. The analyst is able to estimate this true
probability of failure with reasonable accuracy.

Whenwe include the bounds onds, the true probability of failure is
unable to converge to the target probability of failure, but there is
better agreement between the analyst-estimated probabilities of
failure and the true value. This is due to the inclusion of the
extrapolation error in the probability of failure in the redesign
process. We also observe a 1.7% reduction in mean mass from the
original value.

On a final note, we recognize that the large percentage of redesigns
are undesirable. This percentage can be greatly reduced by less
stringent redesign rules, while still having very low probabilities of
failure.

VII. Conclusions

This study presented a methodology to include the effect of a
single future test followed by redesign on the probability of failure of
an integrated thermal protection system. Two methods of calibration
and redesign based on the test were presented. The deterministic
approach, which represents current design/redesign practices, leads
to a greatly reduced probability of failure after the test and redesign, a
reduction that is usually not quantified.

Table 6 Calibration by the correction factor approach with deterministic redesign

Parameter Original Mean Standard deviation Minimum Maximum

dS, mm 71.3 71.5 1.2 44.8 99.4
Mass, kg=m2 35.1 35.1 2.8 28.9 41.6
pf;true, % 0.121 0.0007ab 0.009 0 0.200

aOf the 10,000 possible outcomes of the future test, 4964 required redesign. Conservative cases account for 2425 of
the redesigns, and unconservative cases account for 2539.
bFor the true probability, 99.3% are below the mean.

Table 7 Calibration by correction factor with deterministic redesign, bounds of redesigned
ds restricted to �10% of original ds

Parameter Original Mean Standard Deviation Minimum Maximum

dS, mm 71.3 71.4 0.5 64.1 78.4
mass, kg=m2 35.1 35.1 1.2 33.4 36.7
pf;true, % 0.121 0.0007 0.009 0 0.200

Table 8 Calibration by the Bayesian-updating approach with probability of failure based redesign (pf ;target � 0:01%)

Restriction on redesigned ds Parameter Original Mean Standard deviation Minimum Maximum

No bounds dS, mm 71.3 65.3 8.9 47.5 77.7
mass, kg=m2 35.1 33.7 2.1 29.5 36.5
pf;true, % 0.121 0.003ab 0.016 0 0.100

pf;analyst-corr, % 0.121 0.007 0.004 0 0.015
Within 
10% of dtest dS, mm 71.3 68.8 5.1 64.1 77.7

mass, kg=m2 35.1 34.5 1.2 33.4 36.5
pf;true, % 0.121 0.003 0.016 0 0.100

pf;analyst-corr, % 0.121 0.003 0.005 0 0.015

aOf the 10,000 possible outcomes of the future test, 7835 are redesigned. With the requirement of a 4.5% decrease in mass, 5126 of the 7001
conservative models (pf;analyst < pf;target) are redesigned. For unconservative designs, 2709 are redesigned.
bFor the true probability, 97.4% are below the mean.
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The probabilistic approach includes the Bayesian technique for
calibrating the temperature calculation and redesign to a target
probability of failure. It provides a way to more accurately estimate
the true probability of failure after the test. In addition, it allows
weight to be traded against performing additional tests.

Though the methodology is presented in the context of a future
thermal test and redesign on the ITPS, the methodology is applicable
for estimating the reliability of almost any component that will
undergo a test followed by possible redesign. Given a computational
model, uncertainties, errors, and redesign procedures, along with the
statistical distributions, the procedure of simulating the future test
result by Monte Carlo sampling, calibration, and redesign can be
readily applied.

Futurework includes incorporating the effect of the future test into
the optimization of the ITPS. This study has brought to light many
tunable parameters in the test, such as the bounds on the design
variables, the target probability of failure for redesign, and the
redesign criterion itself. Including these parameters into the opti-
mization will not only optimize the design, but will optimize the test
as well.

Appendix A: Comparison of Bayesian Formulations

In a rigorous formulation of the likelihood function, we would
calculate the conditional probability of obtaining the measured
temperature when the true temperature of the test article is T, as
shown in Eq. (A1):

ltest�T� �
(

1
0:14T

if

����T�Tmeas

T

����� 0:07;

0 otherwise

(A1)

In the illustrative example in Sec. IV.B.1, we simplified this
formulation so that we calculated the conditional probability of
obtainingT givenTmeas, as shown inEq. (17). In Fig.A1,we compare
the two likelihood functions and the resulting updated distribution of

fupdtest;Ptrue for the case in the example.

The figures show only a small difference in the bounds of the
updated temperature distribution and the values of the PDFs. A
comparison is shown in Table A1.

Appendix B: Extrapolation Error

In this paper, we assumed the variation in the magnitude of the
extrapolation error eextrap was linear with the distance of the design
from the test design. The choice of this extrapolation error is very
much up to the analyst, as it is a measure in the variation of the errors
from the updated Bayesian estimate away from the test design. Here,
we examine the effect of an assumption that the extrapolation error is
quadratic, as expressed in Eq. (B1):

eextrap � �eextrap�max

�
kd � dtestk
�dlim

�
2

(B1)

For the example problem in Sec. VI, we estimated eextrap to be 2%
when d is changed by 
10% from dtest. With the quadratic
extrapolation error, this is expressed as in Eq. (B2). Because of this
requirement, the magnitude of the quadratic extrapolation error is
smaller for designs at a distance less than
10% away from the test
design, but larger at greater distances, compared with the linear
variation. We present this comparison in Fig. B1. Examining the
same 10,000 possible outcomes of the future test with probabilistic
redesign (pf;target � 0:01%), the results in Table B1 were obtained:

eextrap � 0:02

�
kd � dtestk
0:1kdtestk

�
2

(B2)

The results show that there is improved agreement between the
true and analyst-estimated probabilities of failure, as well as a
slightly decreased mass and variation in the mass, with the quadratic
variation in extrapolation error. Since the extrapolation error is
smaller at a distance less than
10% away from the test design, the
agreement between the true and analyst-estimated probabilities of
failure is better with the quadratic extrapolation error. However, the
agreement still suffers, due to the large magnitude of the
extrapolation error at distances greater than 
10%.

Fig. A1 Illustrative example of Bayesian updating using the likelihood about Tmeas (top) and the likelihood about T (bottom).

Table A1 Comparison of f
upd
test;Ptrue with different formulations of the likelihood function

Comparison ltest�T� about Tmeas ltest�T� about T
Bounds where updated distribution is nonzero [0.9765, 1.1] [0.9813, 1.1]

Max fupdtest;Ptrue and location 8.1 on [0.9765, 1.1] 8.9 at T � 0:9813
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Fig. B1 Comparison of the eextrap with linear and quadratic variation with the distance of the design from the test design (test design is d� 71:3 mm).

Table B1 Calibration by the Bayesian-updating approach with probability of failure based

redesign (pf ;target � 0:01%), quadratic extrapolation error, and no bounds on redesign dS

Parameter Original Mean Standard Deviation Minimum Maximum

Linear variation in eextrap with ds
dS, mm 71.3 65.3 8.9 47.5 77.7
Mass, kg=m2 35.1 33.7 2.1 29.5 36.5
pf;true, % 0.121 0.003 0.016 0 0.100
pf;analyst-corr, % 0.121 0.007 0.004 0 0.015

Quadratic variation in eextrap with ds
dS, mm 71.3 66.4 7.3 54.4 77.1
Mass, kg=m2 35.1 33.9 1.7 31.1 36.4
pf;true, % 0.121 0.004 0.019 0 0.100
pf;analyst-corr, % 0.121 0.007 0.004 0 0.015
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